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S U M M A R Y
We investigate the applicability of an array-conditioned deconvolution technique, developed
for analysing borehole seismic exploration data, to teleseismic receiver functions and data
pre-processing steps for scattered wavefield imaging. This multichannel deconvolution tech-
nique constructs an approximate inverse filter to the estimated source signature by solving an
overdetermined set of deconvolution equations, using an array of receivers detecting a com-
mon source. We find that this technique improves the efficiency and automation of receiver
function calculation and data pre-processing workflow. We apply this technique to synthetic
experiments and to teleseismic data recorded in a dense array in northern Canada. Our results
show that this optimal deconvolution automatically determines and subsequently attenuates
the noise from data, enhancing P-to-S converted phases in seismograms with various noise
levels. In this context, the array-conditioned deconvolution presents a new, effective and au-
tomatic means for processing large amounts of array data, as it does not require any ad-hoc
regularization; the regularization is achieved naturally by using the noise present in the array
itself.

Key words: Time series analysis; Body waves; Coda waves; Cratons; Crustal structure;
North America.

1 I N T RO D U C T I O N

A number of methodologies have been developed over the years to
analyse converted seismic waves, ranging from single station appli-
cations to high-resolution imaging using dense arrays of broad-band
seismometers. Such developments have been made possible by the
increased availability of teleseismic data recorded at dense broad-
band seismic arrays. We refer the reader to Rondenay (2009) for
a comprehensive review of processing steps that have been devel-
oped to obtain images of discontinuities in the Earth’s subsurface
from data consisting of seismograms sampled by dense arrays of
recorders. Of particular interest are methods focused on P-to-S (PS)
conversion in the coda of teleseismic P waves, due to its generally
high signal-to-noise ratio and lack of contamination from later ar-
riving primary phases. Such signal was first used for direct imaging
in landmark studies by Vinnik (1977) and Langston (1979). To in-
crease the signal-to-noise ratio of converted phases, these authors
combined records from multiple sources by stacking traces that were
source-normalized and time-shifted according to incidence angle.
The term receiver function (RF) was introduced by Langston (1979)
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to describe these normalized records of converted waves and their
stacks.

A key step in the RF processing chain is the ‘source-
normalization’, which requires the construction and application
of a deconvolution operator to remove the extended earthquake
source function, replacing it with an approximate impulse. The
increasing amount of dense array data has motivated the develop-
ment of new multichannel deconvolution methods, such as simul-
taneous deconvolution (Bostock & Sacchi 1997), autocorrelation
stacking (Li & Nábělek 1999) and pseudostation stacking (Neal &
Pavlis 1999, 2001). Here, we examine a multichannel deconvolu-
tion method originally developed for analysing borehole seismic
exploration data. Fig. 1 illustrates this deconvolution step using
data from the POLARIS-MIT seismic array in the Slave province,
Canada. Fig. 1(a) shows the P and SV component data from a
single earthquake recorded at 18 stations, after application of the
free surface transfer matrix method (Kennett 1991) to partition the
three-component records into P-SV -SH wavefields. The effective
source function clearly rings for more than a minute, mainly due
to reverberation in the crust near the source. Fig. 1(b) shows the
same data after application of a deconvolution operator derived by
the method of Haldorsen et al. (1994, 1995), as discussed herein.
The deconvolved SV data show a clear arrival at ∼4.8 s, resulting
from P to SV conversion at the Moho discontinuity. It is the purpose
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968 C.-W. Chen et al.

Figure 1. (a) The P- and SV -component data of a Japan (mb = 6.5, 36-km deep) earthquake. (b) The deconvolved P- and SV -component data of (a).

of this paper to discuss this deconvolution method in the context
of teleseismic data and to describe its application to data from the
POLARIS-MIT array.

2 M E T H O D O L O G I E S

Our study focuses on investigating the effectiveness of the
array-conditioned deconvolution, in comparison with conventional
frequency-domain deconvolution method, that is, the water level
deconvolution. Thus, in this section, we first provide a review of
the water level deconvolution method, and then introduce the array-
conditioned deconvolution.

2.1 Water level deconvolution

Deconvolution is usually cast as a solution to the forward expression
(cf. Rondenay 2009, section 5):

d(t) = w(t) × r (t) + n(t), (1)

in which the observed signal d(t) is expressed as the convolution
of an Earth impulse response r(t) with a source signature w(t).
In eq. (1), n(t) represents residual energy, typically assumed to be
Gaussian random noise with zero-mean. The normalization process
to solve for r(t) involves deconvolving w(t) from d (t). For the ideal
case, that is, there is no noise, the source signature and the observed
signal are known and not frequency band limited, this problem may
be solved directly by division in the frequency domain. However, the
deconvolution procedure is usually ill-posed because of the presence
of random noise, frequency bandwidth limitation and inaccuracies
in estimation of source signature. Therefore, the process has to
be regularized. This is usually achieved in the frequency domain
by pre-whitening the amplitude spectrum of the source wavelet, to
avoid small amplitudes that would cause numerical instabilities and
ringing in the deconvolved signal. Hereafter, we will only be using
signals in the frequency domain. For simplicity, we shall keep the
same notation for the variables in eq. (1).

An approximate solution of the impulse response r̂ is expressed
as (e.g. Berkhout 1977)

r̂ (ω) = w∗(ω)

w(ω)w∗(ω) + δ
d(ω), (2)

where the asterisk denotes the complex conjugate, ω is angular
frequency and δ is a regularization factor. The factor, sometimes

termed water level (Clayton & Wiggins 1976), represents the ex-
pected noise power. When δ is zero, eq. (2) is a simple spectral
division solving the equation d(ω) = w(ω) r (ω). When δ is large,
the denominator in eq. (2) is approximately constant and eq. (2)
becomes a convolution with the estimated source.

The method assumes that the noise spectrum is white and requires
either independent knowledge of the noise power or a search for the
‘best’ parameter that stabilizes the deconvolution process. This is
usually done on a trial and error basis, and thus is subjective and
labour-intensive. It is desirable to introduce more objective means to
estimate the regularization parameter. For example, Bostock (1998)
considered a family of recorded traces dm(ω) and associated source
estimates wm(ω) and proposed choosing δ by minimizing the gen-
eralized cross-validation function GCV (δ) shown as

GCV(δ) =
∑M

m=1

∑L
l=1[dm(ωl ) − wm(ωl )r̂ (ωl )]2

[M L − ∑L
l=1 X (ωl )]2

, (3)

where

X (ω) =
∑M

m=1 wm(ω)w∗
m(ω)

∑M
m=1 wm(ω)w∗

m(ω) + δ
, (4)

with M denoting the number of traces and L is the number of fre-
quencies represented in the discrete Fourier transform. This process
does not require any assumption concerning the noise level in the
data, but it still assumes a white noise spectrum and requires an
iterative grid search to obtain the value for δ (within a given range)
that results in the minimal GCV.

2.2 Array-conditioned deconvolution

Haldorsen et al. (1994, 1995) described a method for exploiting the
redundancy in seismic array data to obtain an optimized deconvo-
lution filter by using the data to estimate both the source and noise
spectra without assuming that either is white. That method may be
summarized as follows.

Suppose we are given data recorded at an array of receivers and
time-shifted and normalized such that each observed trace dm(t) can
be assumed to contain a common source signature w(t), superposed
with a variable ‘noise’ nm. That is, we are given a subscripted array
of equations, like eq. (1):

dm(t) = w(t) + nm(t). (5)
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Array-conditioned deconvolution 969

Here r (t) from eq. (1) is assumed to be an impulse. Thus, all
aligned signals contributing to the source estimation are assumed
to be part of the source signature. Additional copies shifted and
misaligned (e.g. multipath signal arriving obliquely across the array)
are formally part of the ‘noise’, but will be preserved and spiked
in so far as they carry the same signature as the aligned signal.
Similarly, the filter derived from the aligned P data can be applied
to SV data to compress and enhance the converted signal carrying
the same source signature, yielding a compressed arrival with the
delay relative to the aligned signal preserved by the deconvolution
operator.

In the frequency domain, this data model is written as a set of
equations,

dm(ω) = ŵ(ω) + nm(ω). (6)

Here we have replaced w with ŵ to emphasize the need for an
estimate of the signal and the mathematical relationship between
the signal estimate ŵ and the filter estimate W (ω) defined as fol-
lows. Given an estimate ŵ for w, a deconvolution filter W can be
determined, independently for each ω, as the solution to the set of
eq. (6) constrained by the equations

W (ω)dm(ω) = 1. (7)

These equations have the least-squares solution (e.g. Press et al.
1992)

W (ω) = ŵ∗(ω)

ET (ω)
, (8)

where the caret denotes estimate, and ET (ω) is the average total
energy of the raw traces,

ET (ω) = 1

M

M∑

m=1

|dm(ω)|2. (9)

Substituting dm in eq. (9) with the expression in eq. (6), eq. (8)
can be rewritten as

W (ω) = ŵ∗(ω)

|ŵ(ω)|2 + EN (ω)
, (10)

where

EN (ω) = 1

M

M∑

m=1

|dm(ω) − w(ω)|2. (11)

This agrees with eq. (2) when EN (ω) is a constant, independent of
ω, and thus represents a data-adaptive solution to the filter regular-
ization problem, which is applicable in a wider context than is the
water level deconvolution.

The properties of this optimum filter are discussed in detail in
Haldorsen et al. (1994). In particular, one can rearrange eq. (8) to
give

W (ω) = ŵ∗(ω)

|ŵ(ω)|2 D(ω), (12)

where the frequency domain semblance D(ω) is given by

D(ω) = |ŵ(ω)|2
ET (ω)

. (13)

The optimum filter in eq. (12) is thus recognized as a spectral di-
vision filter, multiplied by the semblance, which acts as a data-
adaptive, band-limiting filter attenuating frequencies where the
signal-to-noise ratio is small.

In the original discussion, the source estimate and the filter con-
struction were derived together, assuming that all the data from a

single recorded component were used in constructing both the nu-
merator and the denominator of the filter (eq. 8). As noted, however,
these two aspects of the filter construction can be uncoupled and
treated separately. Once we have the signature estimate ŵ, the fil-
ter obtained by eq. (8) is least-squares optimal for that estimate,
independently of how the estimate was obtained.

Thus, the traces used to estimate ŵ may be distinct from those
used in estimating ET . Moreover, the filter itself may be applied
to traces that are distinct from the traces used to estimate ŵ. In
particular, when, as in the case of teleseimic data, it may be rea-
sonably assumed that a complicated packet of energy is converted
from P to S somewhere near the receiver array, the P arrivals can
be aligned and used to estimate the signature while the complete
ensemble of multiple-component data is used in estimating the total
energy. Note, however, that stability is only guaranteed if the source
estimation traces are included in the estimate for total energy.

In the next section, we carry out synthetic experiments to evalu-
ate the performance of the array-conditioned deconvolution and to
compare the results with those using water level deconvolution.

3 S Y N T H E T I C E X P E R I M E N T S

We construct the synthetic waveforms by using forward-modelled
Earth impulse responses, as well as observed seismograms from
the 2005 August 16 earthquake (mb = 6.5) in Japan, recorded
at 18 stations of the POLARIS-MIT array in the Slave province,
Canada. We perform deconvolution on this synthetic data set with
the addition of various levels of noise. The procedure of the synthetic
waveform construction is as follows:

(1) We compute the synthetic P and SV impulse responses us-
ing Zoeppritz reflection and transmission coefficients (e.g. Aki &
Richards 2002) calculated for a simple two-layer velocity model
and a single horizontal slowness representative of the field data.
Fig. 2(a) shows the result of this computation. The P component
has the direct P wave (Ṕ) and the first-order multiples that end with
P (ṔP̀Ṕ, ṔS̀Ṕ, ŚP̀Ṕ, ŚS̀Ṕ). The S component has the converted S
wave (Ś) and the first-order multiples that end with S (ṔP̀Ś, ṔS̀Ś,
ŚP̀Ś, ŚS̀Ś). Note that the kinematically identical arrivals (e.g. ṔS̀Ś
and ŚP̀Ś) combine so that there are four arrivals in each mode. Note
also that each P arrival has a corresponding S arrival obtained by
replacing the last P segment with an S segment, hence the relative
time delay is the same in all cases.

(2) We align the P-component seismograms of the Japan event
and derive a ‘synthetic’ source signature through diversity stack
(Embree 1968) of the aligned seismograms. The diversity stack is
derived as a least-squares optimal estimate of the signal from aligned
traces with constant signal and variable noise (Embree 1968). For
each trace, the averaging weight is inversely proportional to the total
energy in the trace. For the Slave craton data, we compared the di-
versity stack with mean, median and the first eigenvector estimates
(Ulrych et al. 1999; Rondenay et al. 2005) and found no signif-
icant difference between these methods, except that the median
estimate retains more high-frequency noise. This synthetic source
signature thus represents the noise-free common source signal
(Fig. 2b).

(3) We convolve the synthetic source signal with the synthetic
P and SV impulse responses to yield the noise-free synthetic data
(Fig. 2c).

(4) We extract 300-s long data before the P arrival from each
trace of the P- and SV -component seismograms of the Japan
event recorded by the POLARIS-MIT array, to be representative of
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Figure 2. (a) The synthetic P- and SV -component impulse responses for an
incident P wave of ray parameter p = 0.06 s km−1, sampling an isotropic
two-layer model. The model consists of a 40-km thick horizontal layer
(α0 = 6.6 km s−1, β0 = 3.7 km s−1, ρ0 = 2600 kg m−3) over a half-space
(α1 = 8.1 km s−1, β1 = 4.5 km s−1, ρ0 = 3500 kg m−3). (b) The source
signature estimate used to construct the synthetic array data. (c) The noise-
free synthetic data constructed from convolving (a) with (b).

background noise. We also subtract the synthetic source signal from
the respective observed P-component seismogram, and the resid-
uals obtained are representative of additional incoherent noise be-
tween traces. We combine these two types of noise, randomly shift

them in the time domain and add a scaling factor λ for control-
ling the amplitude, before adding them to the noise-free synthetic
data. As such, we generate synthetic seismograms with character-
istics of an actual earthquake and actual noise variations across
an array. The complete synthetic data model for the P compo-
nent [dp(t)] and SV component [dsv(t)] can be thus described as,
respectively,

dp(t) = ŵ(t) × gp(t) + λNp(t); (14)

and

dsv(t) = ŵ(t) × gsv(t) + λNsv(t), (15)

where gp(t) and gsv(t) are the synthetic P and SV impulse responses,
and N p(t) and N sv(t) are the total (combined and shifted) noise in
P and SV components. By changing the scaling factor λ, we are
able to generate synthetic data with various noise levels to test the
effectiveness of the deconvolution methods. Note that λ does not
change the spectral content of the noise.

Fig. 3 summarizes the results of the synthetic experiments.
Fig. 3(a) shows the synthetic array data (P and SV components)
with noise level λ = 1. Figs 3(b) and (c) show the deconvolution
results using the water level method with the GCV-derived δ param-
eter and with water level of 1 per cent of the maximum amplitude of
the source signature estimate, respectively. Fig. 3(d) shows the result
using the array deconvolution. This synthetic test allows us to make
the following observations. First, the GCV yields trace-dependent
δ values that are equivalent to 0.001–0.01 per cent of the maximum
amplitude of the source estimate. Second, while the water level
method in general recovers the impulse response in most SV traces,
it fails to resolve traces that are anomalously noisy, for instance,
traces 3 and 17. Furthermore, as the water level factor increases, the
deconvolved signal broadens and loses resolution. This is expected
because using a higher water level amounts to pre-whitening more
high-frequency signals. In a sense, it becomes a low-pass filter,
removing high-frequency content in the data. Conventionally, this
process of iterating over a number of water level factors is con-
ducted and visual inspection is required until a ‘best’ water level
is determined. On the other hand, the array deconvolution (Fig. 3d)
does not require any iterative process or human intervention, and
stabilizes noisy traces while better resolving the impulse response
consistently across the array. Here, ET (ω) is calculated using
P-component data.

Note that, in the deconvolution process, ŵ(t) × gp(t) becomes
the effective source signature, and that relative amplitudes in the
deconvolved SV data are slightly altered from those of gsv(t).
This is an issue for any deconvolution process. The consistency
achieved by using a single deconvolution operator for all re-
ceivers should enable further analysis beyond the scope of this
paper.

Similar results are observed when we increase the noise in the
synthetic data. The water level deconvolution becomes unstable,
that is, the deconvolved traces are more ringing, whereas the array
deconvolution still achieves similar resolution.

One way to evaluate the performance of the deconvolution fil-
ters is to measure the variance between the deconvolved signals
across the array. We calculate the variance by summing the square
of the difference between each trace and the mean trace. The corre-
sponding variance of each deconvolved data section is shown as the
number in the parentheses above each panel in Fig. 3. The array de-
convolution yields a much better, that is, smaller, variance than those
from the other two approaches. For water level deconvolution, we
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Figure 3. Summary of the synthetic experiments. (a) The synthetic array data of λ = 1. The deconvolved data section using (b) water level deconvolution with
GCV-derived δ; (c) water level deconvolution with the factor of 1 per cent and (d) array-conditioned deconvolution. The number in the parentheses indicates
the corresponding variance.

note that there appears to be a trade-off between variance and broad-
ening of the deconvolved signal; larger water level results in smaller
variance but less sharp impulse. The choice of the optimal water
level is thus based on this trade-off: when increasing water level
beyond a certain value does not reduce the variance significantly,
we designate this value as the optimal water level to use (1 per cent
in this synthetic case). In contrast, array-coditioned deconvolution
always achieves small variance and sharper impulse. Fig. 4 shows
the comparison of the amplitude spectra of deconvolved signals of
trace three (Fig. 3) derived from the array approach and the water
level approach, respectively, along with the amplitude spectrum of
the raw synthetic trace. The spectra are normalized by the ampli-
tude at 0.5 Hz of each trace. The raw synthetic data is dominated by
low-frequency noise, and the array deconvolution, compared with
the water level method, achieves a better resolution of the impulse
without sacrificing much higher frequency (0.5–1.5 Hz) content.
We emphasize that, since array deconvolution estimates a different
noise energy for each frequency, whereas water level deconvolution
uses a single noise parameter for all frequencies, the difference be-
tween array deconvolution and optimal water level deconvolution is
most significant when the source time function and/or noise is not
spectrally flat. In particular, this is true when the signature contains
near-source reverberation.

In this section, we have demonstrated the effectiveness of the
array-conditioned deconvolution, especially for noisy data. In the
following section, we apply this deconvolution to a field data set of
the Slave province. In this example, we focus our demonstration on
the P- and SV -component seismograms, but note that the method is
readily applicable to SH components as well.

Figure 4. Comparison of the amplitude spectra of the deconvolved SV sig-
nals of trace three, derived from the array deconvolution and the water
level deconvolution, respectively. The amplitude spectrum of the ‘raw’ syn-
thetic trace is also plotted. The spectra are normalized by the amplitude at
0.5 Hz of each trace. Note that the spectra have been decimated by a factor
of 5.

4 A P P L I C AT I O N T O T H E S L AV E
C R AT O N A R R AY DATA

We use seismic array data recorded in the Slave province, an
Archean craton which is located in the northwestern Canadian
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Figure 5. (a) The earthquake event distribution projected with the Slave
craton in the centre (green square). The red circles denote events used in
the previous receiver function study (Chen et al. 2009). The white circles
denote the additional events that are analysed by the array deconvolution.
The green circles denote the four exemplary events whose data are shown in
Fig. 6. The combined data set includes a total of 135 events. (b) Simplified
geological map of the Slave craton (outlined in red). The brown shaded area
is the central Slave basement complex (CSBC; Bleeker et al. 1999), which
is the oldest portion (2.6–4 Ga) of the craton. The blue shaded area denotes
the eastern Slave craton which is covered by juvenile crust. The seismic
stations used in this study are denoted in squares (MIT stations) and circles
(POLARIS stations). The five stations denoted in blue are those whose data
are shown in Fig. 8. From south to north, these stations are BOXN, LGSN,
LDGN, EKTN and ACKN.

Shield (Fig. 5a). The Slave craton has been the subject of in-
tensive geophysical and petrological studies due to its longevity
and the presence of abundant diamondiferous kimberlites. The
POLARIS-MIT seismic array (Fig. 5b) in the Slave craton con-

sists of 23 seismic stations, each equipped with a three-component
broad-band seismometer. A previous receiver-function study (Chen
et al. 2009) identified a distinct crust–mantle boundary, or Moho,
at ∼4.8 s across the array, using water level deconvolution and
common-conversion-depth stacks of high-quality data from 62
teleseismic events with magnitude mb ≥ 5.8 recorded during
2004–2006. Now, using the new array-conditioned deconvolution
method, we are able to analyse data from 135 events with mag-
nitude mb ≥ 5.5 (Fig. 5a) during the same recording period. We
use the event locations provided by the USGS PDE catalogue,
and rotate the horizontal-component data to radial and trans-
verse components (vertical component remains the same). We
subsequently partition the components into P, SV and SH wave-
fields by the free surface transfer matrix (Kennett 1991). After
wavefield partition, we align the data by the predicted arrival
times calculated in a 1-D global reference model (e.g. iasp91,
Kennett & Engdahl 1991). The source signature is estimated from
the P component by diversity stack (Embree 1968), and the noise
energy is calculated from the P-component data. The deconvolu-
tion is then performed to yield deconvolved P and S signals. We
observe that the deconvolved P impulses across the array often show
time differences between each other, indicating inaccurate original
reference alignment. Therefore, in practice, the deconvolved P im-
pulses are iteratively realigned by adjusting their time lags, and a
subsequent deconvolution is performed to yield the final results.

Fig. 6 shows the raw data of four example earthquakes
(Table 1). These raw data show different characteristics of the co-
herently aligned signals in the P components, marking the various
earthquake source signatures, as well as different patterns and am-
plitudes of the background noise in the SV components. Fig. 7 shows
their deconvolved results from array deconvolution, compared with
those from water level deconvolution. The results of earthquake
data are consistent with those of synthetic tests. Both deconvolution
methods result in delta-function-like and well-aligned P signals;
however, the array-deconvolved ones appear sharper, indicating the
effectiveness of the array deconvolution in collapsing the signal
into a spike. On the SV components, coherent signals at ∼4.8 s
can be observed in all data sections, representing the conversion
at the Moho. However, the array-deconvolved data appear more
stable and consistent throughout, while the corresponding water
level-deconvolved data are less so. In addition, a number of differ-
ences are worth noting. First, the array-deconvolved traces contain
more high-frequency energy than do the water level-deconvolved
ones. Second, there are traces that cannot be well resolved by water
level deconvolution and that result in anomalously low-frequency
signal (e.g. in the Costa Rica event, SV traces 1 and 8; in the
Tonga event, traces 3, 6 and 8). In contrast, array deconvolution
in general achieves more stability. We also calculate the variance,
as defined in the synthetic tests, of the deconvolved data (shown
as the number in the parentheses above each panel). In these four
examples, the array-deconvolved data all have much smaller vari-
ances (at least one order of magnitude smaller) than those of the
water level-deconvolved ones. This shows the advantage of array
deconvolution in extracting coherent signals across array while at-
tenuating noise. An additional advantage can be noted by examining
the Tonga event (Fig. 7d). This event has a magnitude mb = 6.3, but
the noisy SV components with anomalous low-frequency patches
has prevented it from being used in the previous RF analysis. Using
the array deconvolution, however, we are able to attain more stable
and thus usable signals from this event.

Of course, additional tweaking of the water level processing, for
example, by high-pass filtering of noisy traces could reduce the
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Array-conditioned deconvolution 973

Figure 6. The raw data (P and SV components) of four exemplary earthquakes from (a) Honshu, Japan; (b) Crete, Greece; (c) Costa Rica and (d) Tonga
Islands. Note the traces are individually normalized. The magnitude (mb) and depth associated with each event are also indicated.

Table 1. The earthquake parameters of the four exemplary events.

Date Time Latitude Longitude Depth mb � (◦) Baz (◦) Location
(◦N) (◦E) (km)

2004 January 25 (025) 11:43:11 −16.83 −174.196 129.8 6.4 94.5959 239.3742 Tonga Islands
2004 March 17 (077) 05:21:00 34.589 23.326 24.5 5.9 74.3788 38.0443 Crete, Greece
2004 June 29 (181) 07:01:30 10.738 −87.043 9 5.8 56.3828 151.9377 Costa Rica
2005 August 16 (228) 02:46:28 38.276 142.039 36 6.5 62.6444 302.5049 Honshu, Japan

Notes: � is epicentral distance from the event to the centre of the POLARIS-MIT array. Baz is backazimuth of the event with respect to the array, counting
clockwise from north.

difference between the water level and array-derived results. The
main point of this paper is that such expert tweaking can be largely
replaced by an automated process suitable for treating very large
data sets including data with very low signal-to-noise ratios.

The processing procedure is implemented for the whole data set
of 135 events. In Fig. 8, we show the deconvolved SV traces as a
function of backazimuth at five receivers. We observe that, in addi-
tion to coherent signals corresponding to the Moho, there appears
to be various coherent signals at different times between the surface
(t = 0 s) and the Moho (t = 4.8 s) from receiver to receiver. These
variations suggest the presence of local crustal heterogeneities be-
neath each receiver, and were not observed before when only limited
high-quality seismic records were utilized. We also plot the decon-

volved data as a function of earthquake magnitude. An example
using data from station ACKN is shown in Fig. 9. We observe that
the Moho signal appears consistently visible in the entire magni-
tude range, and does not degrade at smaller magnitudes (5.5 ≤ mb

< 5.8). This means that the noise for these records is primarily
signal-generated, consisting mainly of misaligned scattered energy
(which is preserved and deconvolved in so far as it shares a signa-
ture with the direct signal) and residual energy not captured by the
source estimate (due to, e.g. variable receiver response and errors in
the polarization pre-processing). The data used for this study were
selected before the results were known and it seems clear that the
pre-selection process was excessively restrictive and that the array
deconvolution can be readily applied to earthquakes with smaller
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Figure 7. The deconvolved data of the four earthquakes shown in Fig. 6. The left-hand column shows the results from array-conditioned deconvolu-
tion. The right-hand column shows the corresponding results from water level deconvolution, denoted with the water level factor used. The choice of
water level is based on the trade-off between the variance and the broadening of the signal. The number in the parentheses indicates the corresponding
variance.

magnitudes. Further analysis of this application is the topic of a
separate paper.

In closing, we note that, traditionally, the deconvolution has been
achieved in an iterative manner, whether it is to find a ‘best’ reg-

ularization parameter in the frequency domain deconvolution, or
to minimize the difference between observed and modelled data in
the time domain deconvolution (e.g. Gurrola et al. 1995; Ligorrı́a &
Ammon 1999). In this context, the array-conditioned deconvolution

C© 2010 The Authors, GJI, 182, 967–976

Journal compilation C© 2010 RAS



Array-conditioned deconvolution 975

Figure 8. The deconvolved SV data sections of five receivers. (a) BOXN; (b) LGSN; (c) LDGN; (d) EKTN and (e) ACKN. (f) The representative backazimuthal
distribution of the teleseismic events recorded at this array. A majority of earthquakes are located at the western Pacific subduction zones (around 300◦).

presents a new, effective and automatic means for processing large
amounts of array data, as it does not require any ad-hoc regular-
ization; the regularization is achieved naturally by using the noise
present in the array itself.

5 C O N C LU S I O N S

The application of the array-conditioned deconvolution improves
the efficiency and automation of the deconvolution process that
is an essential step in RF analysis and in data pre-processing for
imaging of scattered waves. Synthetic experiments demonstrate the
effectiveness of the deconvolution technique, especially for noisy
data. Application of this technique to a teleseismic data set from

the Slave craton yields a deconvolved data section that clearly iden-
tifies the PS conversion at the Moho, and suggests the presence
of local crustal heterogeneities beneath each receiver. The perfor-
mance of the array deconvolution with noisy data promises the
potential of exploiting earthquakes with smaller magnitudes, which
would increase the number of usable sources, thus providing more
comprehensive azimuthal coverage than was possible before.
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Figure 9. (a) The deconvolved SV data section of station ACKN plotted as a function of earthquake magnitude. (b) The distribution of traces according to
magnitude.
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