
Journal of Applied Geophysics 78 (2012) 85–93

Contents lists available at ScienceDirect

Journal of Applied Geophysics

j ourna l homepage: www.e lsev ie r.com/ locate / jappgeo
Using stochastic crosshole seismic velocity tomography and Bayesian simulation to
estimate Ni grades: Case study from Voisey's Bay, Canada

L. Perozzi a,⁎, E. Gloaguen a, S. Rondenay b, G. McDowell c

a INRS, Centre Eau Terre Environnement, 490 de la Couronne, Quebec, Qc, Canada G1K 9A9
b Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
c Vale Inco, Sudbury, Ontario, Canada
⁎ Corresponding author.
E-mail address: lorenzo.perozzi@ete.inrs.ca (L. Peroz

0926-9851/$ – see front matter © 2011 Elsevier B.V. Al
doi:10.1016/j.jappgeo.2011.06.036
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 1 November 2010
Accepted 27 June 2011
Available online 13 July 2011

Keywords:
Crosshole seismic tomography
Seismic inversion
Grade estimation
Voisey's Bay
Modeling of grades is a key step and the major source of error in appraisal stage of mining projects. We used a
geostatistical approach to explicitly integrate seismic travel time data, as well as acoustic and core logging data
into the estimation of nickel grades in the Voisey's Bay deposit. Firstly, the crosshole seismic travel times are
invertedusinga stochastic tomographic algorithm. This algorithmallows for the inclusionof acoustic log data and
seismic covariance into the inverse problem, leading to high-resolution velocity tomographic images of the
orebody. Secondly, grade realizations are generated using a Bayesian sequential Gaussian simulation algorithm,
which integrates the ore grades measured on the core logs and the previously inverted tomographic data. The
application of the presented method to the Voisey's Bay deposit yields an improved knowledge of the geology
setting and generates grade models with realistic spatial variability compared to conventional methods.
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1. Introduction

In themining industry, building an interpretative model of a deposit
is the first step tomove from resource to reserve, as it forms the basis for
the resource estimation process. Since the primary source of informa-
tion comes from drill-hole samples, the interpretative model of the
deposit is highly dependent on the spatial distribution of these samples.
However, most of the new discoveries are located at depths between
500 m and 2000 m. At these depths, the costs of drilling increase
dramatically and the ability of the drill-holes to accurately sample the
mineralization decreases, such that increaseddepth of drilling limits the
quality of the information. High resolution geophysical methods such
radio-frequency (0.1−5 MHz) electromagnetic methods (Fullagar
et al., 2000), borehole radar tomography (Bellefleur and Chouteau,
2001; Zhou and Fullagar, 2001) or seismic tomography (Enescu et al.,
2002; Wong, 2000; Xu and Greenhalgh, 2010) provide the geologist
with new information that can be incorporated into the process of
orebodymodeling. In addition, it has been shown that sonic logs can be
used to constrain seismic tomographybetweendrill-holes, resulting in a
significant increase in the accuracy of the tomographic images
(Gloaguen et al., 2007; Perozzi et al., 2010).

Geostatistical simulations are increasingly used for orebody
modeling and mine planning in both open-pit and underground
mining ventures (David, 1988; Dimitrakopoulos, 1998; Journel, 1974;
Journel and Huijbregts, 1978). Drill-holes data are often complemen-
ted with other secondary, or so-called “soft” data (e.g., data from
geophysics, geotechnics and geochemistry) to improve the under-
standing of the deposit model. In this framework, an optimal estimate
of the mineralization grades, and thus the available resources, is likely
achieved by integrating these different types of complementary data.
The importance of integrating “hard” and “soft” spatial data has long
been recognized in the petroleum industry,where reservoir properties
such as permeability and porosity need to be inferred from a limited
number of drill-holes (Doyen, 1988; Journel and Alabert, 1990; Le
Ravalec-Dupin et al., 2001; Xu et al., 1992). Integrated modeling has
also been used in themining industry in ore reserve estimation (David,
1988; Journel and Huijbregts, 1978). Recently, integrated techniques
have been used to merge core log data with crosshole tomographic
data for orebody modeling (Dimitrakopoulos and Kaklis, 2001).

Thepresent studydescribes anovel approach for integrating crosshole
seismic velocity tomography with Ni grade data measured on diamond
drill-hole core samples to better estimate the spatial variability of the ore
grade. The benefit of this approach lies in the use of a kernel multivariate
density estimator of the joint distribution between velocity and Ni
grade data, to evaluate the likelihood function. The likelihood is used to
obtain a conditional probability of Ni grades for a given velocity value.

2. Geological and geophysical settings

The Voisey's Bay intrusion belongs to the Nain Plutonic Suite and
transects the collisional boundary between the Proterozoic Churchill
Province to the west and the Archean Nain Province to the east
(Fig. 1a). The Voisey's Bay Ni–Cu–Co deposit is associated with two
1.334 Ga troctolite intrusive chambers, the upper Eastern Deeps and
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Fig. 1. a) Regional geology of Voisey's Bay; b) Generalized longitudinal cross-section of the Voisey's Bay deposit (modified from Naldrett and Li (2007)).
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the lower Reid Brook (Fig. 1b), which are connected by a 10 to 100 m
thick dyke (Naldrett and Li, 2007). The complexity of the geological
settings and the spatial variability of mineralization both contribute to
high uncertainties with regards to the shape and the grades of the
deposit between the boreholes. A detailed description of the geology
of Voisey's Bay can be found in Evans-Lamswood et al. (2000);
Naldrett and Li, (2007). The mineralization in Voisey's Bay deposit is
composed of massive, semimassive, and disseminated pyrrhotite,
pentlandite, and chalcopyrite. The seismic property (P-wave velocity)
of those sulfides as well as of most common silicate rocks is well
known from laboratory studies (Birch, 1960; Christensen, 1982;
Salisbury et al., 1996, 2000, 2003). These study shows that the
properties of mixed and disseminated sulfides lie along simple mixing
lines connecting the properties of end-member sulfides and felsic or
mafic gangue. Thus, velocities increase dramatically with increasing
pyrite content, but they actually decrease with increasing pyrrothite,
chalcopyrite and pentlandite content along trend which can be
calculated using the time average relationship of Wyllie et al. (1958).

A crosshole seismic tomography survey that recovers seismic
velocities was thus deployed at the Voisey's Bay deposit in order to
refine the geological model and better estimate the spatial distribu-
tion of grades.
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3. Methodology

In this section, we introduce the methodology used in this study.
Firstly, we describe the crosshole seismic tomography inversion and
then the integration of the seismic velocities with grades.

3.1. Crosshole seismic stochastic tomography

Crosshole seismic tomography offers means to investigate elastic
properties of the rock mass between two or more boreholes. This
technique has been developed and applied in the last 30 years in a
number of settings worldwide (Gustavsson et al., 1984). In Canada,
crosshole seismic tomography applied tomining has been reported by
Cochrane et al. (1999); Cosma and Enescu (2003); Maxwell and
Young (1993); Wong (2000).

Crosshole seismic traveltime tomography is based on the assump-
tion that the energy travels from a source (lowered into a borehole) to a
receiver (lowered into another neighboring borehole) along a well-
constrained raypath. Fig. 2 shows the acquisition geometry employed in
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Ls = t ð1Þ
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(to first order) with small changes in model velocity distribution.
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Fig. 3. Description of the BSGS approach. Look in the text for the description (modified
from Gastaldi et al. (1998)).
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problem (Berryman, 1991). Thus L is not directly invertible. Classical
Least Squares based algorithms such as LSQR (Least Squares QR
factorization) (Paige and Saunders, 1982) are widely used in seismic
tomography. The LSQR algorithm converges quickly and is particularly
effective for sparse matrices. However, the convergence criteria must
be carefully chosen to avoid the algorithm iterating on noise.

More recently, geostatistical approaches for linear inverse prob-
lems became widespread (Gloaguen et al., 2005, 2007; Hansen and
Mosegaard, 2008; Hansen et al., 2006). In particular, Gloaguen et al.
(2005, 2007) developed a new type of tomographic algorithm that
combines geostatistical simulation and tomography in the same
process. The algorithm is based on the linear relation between
slowness and travel time (cf. Eq. (1)) and the fact that their covariance
matrices are also linearly related,

cov t; tð Þ = L cov s; sð ÞLT + C0 ð2Þ

where cov(t,t) is the travel time covariance matrix, cov(s,s) is the
slowness parameter covariance matrix and C0 is the travel time error
covariance matrix. An important step of stochastic tomography is the
covariance modeling (Gloaguen et al., 2005). The slowness covariance
cov(s,s) can bemodeled by choosing amodel functionwhose parameters
are estimated using the experimental covariances of the travel times.
When an acceptable slowness covariance model is obtained, the
stochastictomographic inversion of the slowness field is computed.
Because the true velocity field is not known, the first tomographic
iteration is performed using straight ray approximation. Of course, the
straight ray is not a satisfying approximation. Thus, the linear system has
to be solved iteratively, computing curved ray at each iteration. In our
case, three curved ray iterations were done. In addition, acoustic logs
along the boreholes can be used as constraints to decrease the variance of
the estimated velocity (Gloaguen et al., 2007; Perozzi et al., 2010).

3.2. Integration of seismic tomographic images and grades

Random field theory (Christakos, 1992) can account for multiple
spatial variables and yields robust estimates of a primary attribute
(ore grade in our case) by using a number of secondary variables (for
instance geophysical data). Several approaches for the inclusion of
auxiliary data in inverse problems have been proposed in geosciences
(Cassiani et al., 1998; Deutsch and Journel, 1998; Dimitrakopoulos
and Kaklis, 2001; Journel and Huijbregts, 1978). Among them,
Bayesian sequential Gaussian simulation (BSGS) provides a frame-
work to update a prior distribution by using the joint probability
density function between a primary variable (here, the Ni grades θn)
and secondary variable (here, the seismic velocity Vp). BSGS has
previously been used to map porosity from seismic data (Doyen et al.,
1996) to predict reservoir thickness under tuning conditions (Gastaldi
et al., 1998) and to characterize heterogeneous aquifer (Dubreuil-
Boisclair et al., 2011). In this method, it is assumed that the
multivariate statistical relationship between ore grade (θn) and
seismic velocities (Vp) field, measured along boreholes, can be
described by a spatially invariant joint probability distribution. The
non-parametric kernel density estimation method (Parzen, 1962) is
used to estimate this probability distribution function. The BSGS is
applied by repeating 4 steps as illustrated in Fig. 3. First, a grid cell is
randomly selected to be the object of the simulation of model
parameter θn (a). Second, the prior θn distribution for each cell is
obtained by simple kriging under Gaussian hypothesis using known θn
values (b). Third, we compute the likelihood by extracting a slice of
the joint probability distribution (Fig. 4b) for the grades correspond-
ing to the measured seismic velocity at the selected grid cell. The
likelihood function determines the range of possible grade values
consistent with the observed velocity tomography (c). Fourth, we
calculate the posterior grade distribution by calculating the product
of the prior model distribution and the likelihood function (d). Steps
(a) to (d) are repeated until all the grid cells are simulated, taking into
account, for every new cell grid, the values previously simulated.

4. Acquisition parameters and data at Voisey's Bay deposit

Vibrometrics was contacted by Inco Ltd to acquire crosshole
seismic data between a number of boreholes during the second phase
of the Eastern Deeps delineation program. The spacing between the
boreholes pair 542–540, retained for this study is 30 m (Fig. 2b). The
apparatus used at Voisey's Bay consists of a piezoelectric source based
on the Swept Impact Seismic Technique (SIST) (Park et al., 1996) and
a string of 24 hydrophones. The source employed at Voisey's Bay
produce sweeps of high voltage (6000 V) pulses during 20 to 30 s. The
frequency band employed was 100−3000 Hz. More details about the
apparatus and on the tomographic data can be found in Cosma and
Enescu (2003) and Enescu et al. (2002).

The seismic velocities Vp of the formation adjacent to the boreholes
were also measured with acoustic logging probes. Analysis of Ni and
other mineral grades on core samples along boreholes were also
logged.

Fig. 2 shows both the acoustic logs (P-wave velocity) and core
logs (nickel ore grades) for boreholes 542 (Fig. 2a) and 540 (Fig. 2c)
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as well as the crosshole seismic survey geometry between the
source borehole (542) and the receiver borehole (540) (Fig. 2b). The
latter shows simplified ray coverage between the two boreholes;
the total number of rays is more than 20,000. A direct relationship
between a decrease in Vp response and an increase in sulfide grade is
clearly displayed in both Fig. 2a and c. Many variables in the Earth
Sciences, such as grades measured on core samples, show an
asymmetric distribution with a few very large values (positive
skewness). In order to estimate the a priori distribution in the
sequential Gaussian simulation framework, a transformation of the
original grade data distribution into normally distributed grade data
is needed, which is achieved by normal score transform, (Deutsch
and Journel, 1998). At each cell to be simulated, back transformation
of the a priori distribution into the original space distribution is
then applied. This is done by sampling the normal distribution
and back-transforming each samples at a time. Fig. 4b shows the
prior asymmetric distribution and Fig. 4c shows the normal scores
distribution.
5. Results

5.1. Stochastic crosshole seismic tomography

The survey covers an area measuring 232×30 m2. It was divided
into a grid of 1.5×1.5 m2 cells, leading to a total of 3496 cell values to
estimate. The estimated slowness covariance model is an exponential
model with ranges equal to 60 m across and 10 m along boreholes. The
slowness variance is found to be 0.002(s/km)2 and the nugget effect for
travel times is equal to 0.1s2. Fig. 5 shows the seismic velocities. The
inversion process has been computed with the bh _ tomo package
(Giroux et al., 2007) in the Matlab programming environment. The
source (542) and the receiver (540) borehole locations are enhanced
with a black contour line. Fig. 5a shows the “best” simulated realization
obtained after gradual deformation of 32 stochastic realizations. In the
gradual deformation method (GD) (Hu, 2002; Le Ravalec-Dupin and
Nœtinger, 2002), the 32 realizations are combined sequentially, two at
time, with weights chosen as to minimize the gap between computed
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and measured travel times. The gradual deformation method enables
the identification of stable and well-defined features present in most
retained realizations. The results obtained fromGDmethodwill be used
as the reference Vp model for the BSGS algorithm. The choice of
calculating 32 realizations is a compromise between computing time
and variability between realizations. The uncertainty on the results is
inferred fromthe standarddeviationof themodel distribution, as shown
in Fig. 5b. Standard deviation values are relatively small everywhere
(b1 km/s) except at the top and the bottom of the borehole 540where
there is no ray coverage. The map of standard deviation gives a visual
assessment of the uncertainty associated with the velocity estimates
and thus the robustness of the features in the image. The uncertainty is
null where constraints on velocity are available (along boreholes) and is
higher in high velocity area compared to low velocity areas. Taking the
mean of the 32 stochastic realizations (Fig. 5c) yields a resulting model
that is comparable to the model produced by cokriging.

Fig. 5a and c shows a 50 m thick zone of low velocity at a pseudo-
depth of 150 m that exhibits a strong continuity between boreholes
542 and 540. The contrast with the velocity of the host rock is of the
order of 3.5 km/s. The model resulting from the gradual deformation
approach comprises two thin low-velocity zones at the top and the
bottom of the receiver borehole (540). These are artifacts associated
to regions of the model where ray coverage is limited or non-existent.

5.2. Standard sequential Gaussian simulation (SGS)

In this paragraph, we illustrate briefly the standard grade
modeling technique based on grades measured along boreholes.
Fig. 6 shows an example of a conventional sequential Gaussian
simulation (SGS) of the grades between boreholes 542 and 540. As in
our case we are dealing with non-Gaussian variables, a Gaussian
transform has been applied to the well data and the simulation is
conducted from the Normal score. This figure presents two randomly
chosen realizations (a and b) among 30 realizations, the standard
deviation (c) and the mean of 30 simulations for nickel grade (d). The
massive sulfide body is clearly observed between the two boreholes.
However, this method does not resolve precisely the limits of the
deposit, as confirmed by the high standard deviation values obtained
at the edges of the mineralized region (1.5 km/s, Fig. 6c). As shown
above, an important issue that needs to be addressed in all SGSmodels
of reserve estimation is the approach used to define the boundaries of
the mineralization, since these boundaries define the region within
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which geostatistical modeling is applied. The outlines of the
mineralized body (or wireframes) are traditionally traced manually
on the basis of the gradesmeasured on the drill cores. This approach is
extremely time consuming and sometimes inaccurate due to the
complex geometry of the ore bodies. Since manual methods are often
associated with non-reproducible implementation, they can lead to
high dilution of the minable units (Pan, 1995). For those reasons, the
Bayesian approach has been proposed in this study.
MEAN OF 30
SIMULATIONS

SIMULATION B

ps
eu

do
de

pt
h 

[m
]

ps
eu

do
de

pt
h 

[m
]

SIMULATION A

300
distance [m]

300
distance [m]

300
distance [m]

300
distance [m]

STANDARD
DEVIATION

N
i [

%
 w

t]
N

i [
%

 w
t]

4

0

3

2

1

N
i [

%
 w

t]

4

0

3

2

1

N
i [

%
 w

t]

4

0

3

2

1

1.5

0

1

0.5

0

100

200

150

50

0

100

200

150

50

ba

dc

Fig. 7. Bayesian sequential Gaussian simulation (BSGS) for nickel grades between
boreholes 540 (source) and 542 (receiver). The different panels show (a–b) two
simulations among 30 realizations, (c) the standard deviation of the 30 realizations, and
(d) the mean of the 30 realizations.
5.3. Bayesian sequential Gaussian simulation (BSGS)

The Bayesian sequential Gaussian simulation (BSGS) proposed in
this paper (Fig. 7) is compared to the results obtained with a
conventional sequential Gaussian simulation (Fig. 6). The Vp image
obtained with the GD method presented above is used as reference
image for the BSGS algorithm. Hence, at every pixel we know the
optimal tomographic Vp. This value is used to obtain the Ni grade
likelihood distribution from the kernel multivariate density estimator
(Fig. 3c). Fig. 7 shows two randomly chosen realizations (a and b)
among 30 simulations, the standard deviation (c) and the mean of 30
simulations for nickel grade (d). The choice to calculating30 realizations
arises from the fact that adding one more realization does not change
considerably the variability between realizations. The massive sulfide
zone is clearly observed. The values for nickel grades in Fig. 7a and b are
quite high (≈4 wt.% of Ni). Fig. 7c shows that the uncertainty is close to
zero except at the border of themineralization. This can be explained by
the fact that in the kernel, a value around 5 km/s gives almost the same
probabilities to have Ni grades between 0−4 wt.% (Fig. 4a). This high
probability rangeofNi gradeobviously increases thevariability between
each realization. Themeanof the 30 simulations shown in Fig. 7d gives a
nickel grade model with values between 3 to 4 wt.% that is consistent
with the values measured along boreholes.

5.4. Bayesian simulation without direct observation of grades along
boreholes

The Bayesian simulation does not require the relation between
grades and sonic logs to be assessed in every borehole. In fact, we
assume that the relationship between nickel grade θn and Vp, built for
a nearby boreholes pair is approximately the same in surrounding
regions. Hence, we can build model grades for boreholes pair
investigated by crosshole tomography by using the same non-
parametric kernel density. Fig. 8 shows the tomography-based
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velocities between boreholes 214 (source) and 230 (receiver) from
the Eastern Deeps, obtained with the geostatistical inversions. As in
Fig. 5, the gradual deformation (a), the standard deviation (b) and the
mean of 32 simulations (c) are presented. A decay in Vp associated
with a subhorizontal massive sulfide region is obvious. The standard
deviation (Fig. 8b) shows that the uncertainty is generally low
(b0.5 km/s) except for the zones where the ray coverage is poor
(bottom of the receiver (230) borehole).

Even if we do not have access to the Ni grades measured on
diamond core for boreholes pair 214–230, we are able to compute a
BSGS by using the joint probability distribution function between Vp

and θn built for the boreholes pair 542–540. The results are shown in
Fig. 9. Two realizations (a and b), the standard deviation c) and the
mean of 30 simulations (d) are presented. In Fig. 9d, the nickel zone is
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Fig. 9. Bayesian sequential Gaussian simulation (BSGS) for nickel grades between
boreholes 214 (source) and 230 (receiver). As for Fig. 7, the different panels show (a–b)
two simulations among 30 realizations, (c) the standard deviation of the 30
realizations, and (d) the mean of the 30 realizations.
clearly visible, subhorizontal and continuous between boreholes at a
pseudo-depth between 80 m and 140 m and its limits are well
defined. The geometry is consistent with the geological model
described in Naldrett and Li (2007). The uncertainty (Fig. 9c) is
close to zero, except near the mineralization limits and, generally
where the seismic velocities (Fig. 8) are around 5. This can be
explained, as for the Fig. 7c, by the fact that in the joint probability
function, a velocity around 5 km/s gives almost the same probabilities
to have Ni grades between 0−4 wt.% (Fig. 4a). This high probability
range of Ni grade obviously increases the variability between each
realization.

6. Discussion and conclusion

The results obtained with crosshole seismic stochastic algorithm
demonstrate the capacity of the method to give high resolution images
for themineralized body at Voisey's Bay. One benefit of this approach is
that it is self-regularized. In addition, it enables the identification of
stable and well-defined features present in every realization. In
particular, geostatistical tomography allows a robust characterization
of the low velocity zone, in this case associated with the mineralization
zone (drastic decay of Vp). In addition, it has been shown that stochastic
inversion can be constrained by sonic logs. It is obvious that we could
retain other inversions method to obtain velocities between boreholes,
butwe chose this stochasticmethod as it preserves thewhole amplitude
range of the data. In the second part of the paper, the result obtained
with the stochastic tomography inversion has been integrated with
grades measured along boreholes using a BSGS for ultimately modeling
nickel grades. This approach has been compared with a conventional
SGS. The proposed method allows to build a model for Ni grades based
on stochastic seismic tomography. The modeling of the in situ
relationship between Vp and Ni grades is described by the kernel joint
probability density function estimator. The results show that the
proposed method is suitable for the grade simulations for two reasons:
1) since the geometry of the deposit is constrained by seismic
tomography, the boundaries of the mineralization are better defined,
leading to less dilution factors for blocks near or at boundaries; 2) the
spatial distribution and estimation of nickel ore grade constrained by
seismic tomography are in better agreement with the geological model
of Eastern Deeps than the model obtained by conventional SGS. In
addition, this method was shown to be applicable for the estimation of
mineral grades between boreholes, evenwhen direct observation along
boreholes is not available. The method could be obviously applied to
other economicallyworthwhileminerals estimation as Cu and Co. Other
geophysical techniques such as EM, DC-resistivity or even seismic
attenuation tomography could be included in the algorithm. Not only
the boundaries of the mineralization could be better constrained, but
also the geophysical parameter could be used to estimate the joint
probability distribution, leading to more accurate results.
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